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Abstract

Floating wind turbines are becoming fashionable within the Renewable Energy world. Numerical anal-

ysis is imperative in order to improve the Floating Offshore Wind Turbines designs. This type of wind

turbines are affected by both aerodynamic and hydrodynamic loads and modelling the fully coupled

response is highly complex. The complete simulation of a full-scale turbine under wind and waves us-

ing viscous-flow Computational Fluid Dynamics codes is still nowadays very costly. An alternative is to

model the Floating Offshore Wind Turbine behaviour using a scaled turbine of smaller dimensions. One

method is using Froude-scaling to model the loads and geometric similarity for the dimensions. However,

with this methodology, aerodynamic loads are not scaled properly due to Reynolds dissimilitude that can

cause mismatch of it in model- and full-scale turbine. In this work, the aerodynamic analysis of model-

and full-scale NREL 5MW wind turbines is performed with a RANS (Reynolds Averaged Navier-Stokes)

solver, leaving the hydrodynamic part and coupled analysis for future studies. A different behaviour is

determined comparing the performance of both turbines, mainly due to the different Reynolds number

that makes the flow fully turbulent at full-scale while for model-scale there is transition. This affects the

performance of the model-scale turbine specially at the power coefficient, that drops drastically in com-

parison with the full-scale one. Focusing on the model-scale turbine, the analysis is made for different

grid refinements, turbulence models and transition models performing a verification procedure of the

results, obtaining large uncertainties on the power coefficient and mismatch with the experiments, that

demonstrate the difficulty of capturing the real flow behaviour with a RANS method.
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Resumo
As turbinas eólicas flutuantes estão a tornar-se moda no mundo das Energias Renováveis. A análise

numérica é imperativa a fim de melhorar o projeto das turbinas eólicas flutuantes. Este tipo de turbinas

eólicas é afectado tanto por cargas aerodinâmicas como hidrodinâmicas e a modelação da resposta

totalmente acoplada é altamente complexa. A simulação completa de uma turbina à escala real sob

a ação do vento e ondas utilizando códigos de mecânica de fluı́dos computacional para escoamentos

viscosos é ainda hoje muito dispendiosa. Uma alternativa trata-se de modelar o comportamento da

turbina eólica flutuante utilizando uma turbina à escala de dimensões mais reduzidas. Um método é

utilizar a escala de Froude para modelar as cargas e a semelhança geométrica para as dimensões. No

entanto, com esta metodologia, as cargas aerodinâmicas não são devidamente dimensionadas devido

à dissimilitude do número de Reynolds que pode causar grandes diferenças na previsão entre a turbina

à escala do modelo e à escala real. Neste trabalho, a análise aerodinâmica da turbina eólica NREL

5MW tanto à escala do modelo como à escala real é realizada com um método RANS (Reynolds Av-

eraged Navier-Stokes), deixando a parte hidrodinâmica e a análise acoplada para estudos futuros. Um

comportamento diferente é determinado quando comparado o desempenho à escala do modelo com

a escala real, principalmente devido ao diferente número de Reynolds que torna o escoamento total-

mente turbulento à escala real, enquanto que para a escala do modelo prevê-se transição. Este efeito

afecta o desempenho da turbina à escala do modelo, especialmente para o coeficiente de potência,

que cai drasticamente em comparação com a turbina à escala real. Centrando-se na turbina à escala

do modelo, a análise é feita para diferentes nı́veis de refinamento da malha, utilizando modelos de tur-

bulência e modelos de transição, tendo sido realizado um estudo de verificação dos resultados, onde

se obtiveram grandes incertezas para o coeficiente de potência e grandes diferenças com os resultados

experimentais, que demonstram a dificuldade em prever o escoamento real com um método RANS.

Palavras Chave

Turbinas Eólicas Flutuantes, RANS, Efeitos de Escala, Modelos de Turbulência, Modelos de Transição.
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1.1 Motivation

The world population is increasing constantly year by year and in consequence there is a growing de-

mand of energy worldwide. Fossil fuels prices increase is dropping the demand and giving a room for

the development of clean and sustainable alternatives [1, 2]. One of the most widespread alternatives

for clean and sustainable energy is wind. At the end of 2019, the total capacity for wind energy globally

was over 651 GW, an increase of 10 % compared to 2018, and it is expected to grow over 355 GW in

the next 4 years [3]. In 2005, a study of the potential wind energy generated worldwide was performed

and it gave an estimation of 72 TW, which is more than enough to supply the energy needs of the world

population [4].

Onshore wind energy technology has already been used with success in the last decades, with plenty

of wind farms deployed worldwide, but it has lots of limitations. During the last years, a next step has

been taken with the foundation of offshore wind installations, with a number of advantages.

The size of the onshore wind turbines is extremely limited by the transportation and erection equip-

ment available, which constrains the amount of power obtained from the wind. On offshore wind turbines,

the size of the wind turbines can be higher, thanks to the lifting capacities of marine shipping and han-

dling equipment. The visual appearance of massive onshore wind turbine farms in populated areas are

starting to be undesirable. This visual impact is mitigated by offshore turbines at a sufficient distance

from the coast. Noise reduction, which increase the cost of onshore wind turbines, does not need so

much attention on offshore wind turbines. Another advantage of offshore wind turbines is that the wind

tends to blow faster and more uniformly at sea than on land due to the lack of topographical constraints

such as mountains or buildings. This translates into less wear on the turbine components and more

electricity generated per square meter of swept rotor area. Finally, onshore wind farms are usually lo-

cated in remote areas, which needs the installation of long power lines to transmit the electricity to the

populated areas, but offshore wind turbines can be placed close to high-value urban load centers.

The main disadvantage of the offshore wind turbines compared to the onshore ones is the increase

in cost due to the higher investment costs and the restricted accessibility at sea, which translates into

higher maintenance costs. Furthermore, the construction is technologically complicated and the environ-

mental conditions at sea are more severe, more corrosion due to salt water and more loads from waves

and ice, current loads, earthquakes, temperature variation, sea-bed movement and marine growth.

Despite this disadvantages, offshore wind turbines are currently the more promising way of wind en-

ergy extraction, although it is a technological challenge [5].
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During the last decades, bottom-founded offshore wind installations have been working with success,

bringing total cumulative installations to 29.1 GW at the end of 2019, 6.1 GW more than at the end of

2018. Furthermore offshore wind energy is not expected to be affected by the COVID-19 pandemic and

will be the key for Green Recovery [6].

The water-depth is a limiting factor as the installation of very large wind turbines for really deep water

increases significantly the cost. The next step after the bottom-founded offshore wind turbines are the

Floating Offshore Wind Turbines (FOWTs), that consists in installing the wind turbines on top of a float-

ing structure.

Figure 1.1: Technological evolution of wind turbine installations [7]

A report made by European Wind Energy Association (EWEA) stated that reliable FOWTs installa-

tions are necessary to unlock all the market potential in the Atlantic, Mediterranean and deep North Sea

waters. It is stated that the potential wind energy that could be obtained on the deep waters of the North

Sea could meet the total European Union electricity by four times [8]. Comparable statements were

made by the National Renewable Energy Lab (NREL) for United States [9] All this statements seem

very positive, but the deployment of the FOWts installations is still on its first stages and the sector must
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overcome technical, economic and political challenges. Both EWEA and NREL reports also state that

reliable modeling tools are crucial for further improvement of FOWT designs.

In the past years several FOWTs design concepts have been investigated (see fig. 1.2). Moreover,

some FOWTs installations have been deployed like the Hywind spar-buoy in Norway with a 2.3 MW

turbine; the WindFloat in Portugal with a 2MW wind turbine; the Goto Island Project with a 2MW wind

turbine in Japan [10]; or the VolturnUS 1:8 in US with a one-to-eight scale FOWT [11]. This last design

was based on the NREL 5MW baseline turbine, the subject of study in this thesis. All this installations

where just formed by one wind turbine. At the moment, just two FOWTs farms are operational, the Hy-

wind Scotland and the WindFloat Atlantic. The first one was deployed in 2018 and it consists of 5 wind

turbines that can give 30 GW of energy [12]. The second one was deployed in Portugal in 2020 and it

consists of 3 wind turbines that can give 25 GW [13].

Figure 1.2: Support structure classes [10]

The FOWTs has several technical challenges as these turbines are exposed to more loads than the

land based ones. There are additional loads such as irregular wave loads, ice loads, collision impact,

ocean currents and many others (see fig. 1.3). In addition, fluid structure interaction has an important

role due to the large and slender bodies (blades and tower) of these installations. Modeling the fully

coupled aeroelastic and hydrodynamic response is therefore highly complex [14].
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Figure 1.3: Environmental loads working on FOWTs [14]

1.2 Literature review

Experimental campaigns are crucial to validate the FOWT design tools and to better understand the

complex underlying physics. During the last decades, several experimental campaigns have been per-

formed on wind turbines (see table 1.1). Between these campaigns, there are three that should be

highlighted. The NREL campaign, that took part on the United States from 1992 to 2001 and was di-

vided in 6 phases of data recollection where two different turbines were tested. From this campaign,

plenty of useful aerodynamic data was recollected. Also NREL tested a 1/50 model NREL 5MW tur-

bine, the one studied on this thesis. Also important to highlight the European campaign performed by

the International Energy Agency (IEA) with four campaigns carried out by differents institutions: Delft

University of Technology (DUT), Imperial College/Rutherford Appleton Laboratory (IC/RAL), RISO lab-

oratory and Netherlands Energy Research Foundation (ECN). Other important experimental campaign

is the one performed in Netherlands, the Model Experiments in Controlled Conditions (MEXICO) cam-

paign from 2007 to 2014 where considerable data was collected for different environmental and turbine

conditions.
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Table 1.1: Wind turbines experimental campaigns

Campaign (year) Model Data obtained References
NREL phase I-IV

(1992-1999)
Three bladed 10 m

diameter
Complete measurement of all
interesting aerodynamic data [15,16]

NREL phase V and VI
(2001)

Two bladed 9.8 m
diameter

Complete measurement of all
interesting aerodynamic data [17,18]

MEXICO (2007) Three bladed 4.5 m
diameter rotor

Pressure and load for different
Vw and TSR. PIV

measurements
[19]

ECN (1993-1997) Two bladed 27.44 m
diameter rotor

Pressure distributions, normal
and tangential forces, inflow

velocities, angle of attack
[20]

IC/RAL (1997) Three bladed 17 m
diameter rotor

Pressure distributions, normal
and tangential forces, inflow

velocities, angle of attack
[20]

RISØ (1991-1993) Three bladed 19 m
diameter rotor

Pressure distributions, normal
and tangencial forces, inflow

velocities, angle of attack
[20]

DUT (1997) Two bladed 10 m rotor
diameter

Pressure distributions, normal
and tangencial forces, inflow

velocities, angle of attack
[20]

FINO 2 (2019) Alpha Ventus wind farm
(AV4 and AV5) Power and tower bottom loads [21]

MSWT (2014) Three bladed 2.52 m
diameter rotor

Trust and power for different
TSR [22]

NREL 5MW Three bladed 2.56 m
diameter rotor

Trust and power for different
TSR [23]

New MEXICO
(2008-2014)

Three bladed 4.5 m
diameter rotor

Pressure and load for different
Vw and TSR. PIV

measurements
[24]

NTNU Three bladed 0.45 m
diameter rotor Thrust, power and wake [25]

UNAFLOW (2018) DTU 10MW Thrust, power, wake and PIV
measurements [26]

As well as the experimental campaigns, it is also really important to perform numerical analysis in

order to optimize the wind turbines and help for the design of them. In addition, they are a lot cheaper

than experimental campaigns. Lots of numerical studies have been performed in the last years with

different turbulence models and transition models. A summary of some significant studies are pre-

sented on table 1.2. Different numerical models have been used to predict the aerodynamic perfor-

mance of wind turbines as potential flow models like Boundary Element Method (BEM) or Vortice Lattice

Method (VLM) for the NREL 5MW wind turbine and MEXICO turbine respectively; Reynolds Averaged

Navier-Stokes (RANS) and Unsteady Reynolds Averaged Navier-Stokes (U-RANS) models for NREL

MW turbine and NREL Phase VI turbine with different turbulence models like k − ω SST model and

Spalart-Allmaras (S-A) model. Some new studies have been performed with transitional models as the

γ − Reθ model. Also, more sophisticated models like Large Eddy Simulation (LES), Delayed Detached

Eddy Simulation (DDES) or Arbitrary Lagrangian-Eulerian Variational Multiscale (ALE-VMS) have been

used for the NREL 5MW turbine or the Beddoes-Leishman Dynamic Stall (DS) for the MEXICO turbine.

Important to highlight the numerical study made my M. Make and G. Vaz on 2014 about the NREL 5 MW
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wind turbine [23], that will be use as an starting point for the current thesis, where they used a RANS

numerical method with a k − ω SST turbulence model to predict the aerodynamic behaviour of the wind

turbine.

Table 1.2: Wind turbines numerical studies

Wind turbine Numerical model Turbulence/Transition
Model References

NREL 5MW
RANS K − ω SST [23]

DDES S-A (wall) and LES
(rest) [27]

VLM - [28]

MSWT RANS-BEMT K − ω SST [29]
RANS K − ω SST [23]

MEXICO

RANS K − ω SST [30]
BEM - [30]

Multilevel Panel Method - [31]
Beddoes-Leishman DS - [32]

Two back-to-back NREL
5MW

ALE-VMS LES [33]
RANS LES [34]

VAWTs U-RANS K − ω SST
[35]S-A

DES S-A

NREL phase VI
U-RANS K − ω SST [36]

RANS K − ω SST [37]
k − ω SST/γ −Reθ [38]

1.3 Objectives

The aim of the thesis is to perform a numerical analysis of the NREL 5MW wind turbine, a turbine de-

signed for FOWTs applications, both model- and full-scale using a RANS CFD solver. The thesis will

focus on the aerodynamic analysis, leaving the hydrodynamic part and coupled analysis for future stud-

ies.

The tasks of the thesis can be summarized as follows:

1. The research previously done by M. Make and G. Vaz will be evaluated to be used as a starting

point for the .current thesis work.

2. A numerical study of the full-scale NREL 5MW using a RANS solver and a turbulence model

focusing on the thrust and power coefficients for different TSR. This study will be compare with

the previous study of M. Make and G. Vaz.

3. To further understand the aerodynamic behaviour of the full-scale NREL 5 MW, it will be also

studied the friction and pressure coefficients for the design TSR (TSR = 7) as well as the limiting
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streamlines calculation.

4. A numerical study considering the model-scale NREL 5 MW using a RANS solver and a turbu-

lence model focusing on the thrust and pressure coefficients for different TSR. This study will be

compared with the previous study of M. Make and G. Vaz and experimental results.

5. Numerical sensitivity analysis using different turbulence models and refinement sensitivity analysis

for the design TSR on the NREL 5MW model-scale. Furthermore, a V & V study is performed to

validate the numerical results against experimental measurement data.

6. To further understand the aerodynamic behaviour of the model-scale NREL 5 MW, the friction and

pressure coefficients for the design TSR (TSR = 7) as well as limiting streamline calculation will

also be studied.

7. Research on the use of a transition model to predict the aerodynamic behaviour of the model-scale

NREL 5 MW.

8. Comparison of the aerodynamic behaviour of the NREL 5 MW at model-scale and full-scale.

1.4 Report summary

The remaining chapters of this report will provide a detailed description of the study and the relevant

theory.

In chapter 2, the theory needed to understand the study will be presented. Topics such as the turbine

aerodynamics or governing equations will be covered.

In chapter 3, the numerical background will be discussed, given information about the numerical tool

and grid generation software used: ReFRESCO and Hexpress respectively.

The numerical setup used for the calculations is explained in chapter 4. The domain, boundary con-

ditions or grid topology selected for the numerical study will be discussed.

In chapter 5, all the results obtained during this thesis will be presented, both for full-scale and model-

scale NREL 5 MW.

Finally, an overall conclusion and recommendations regarding the complete study are provided in

chapter 6.
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2.1 Turbine Geometry and coordinates system

In this section, the geometry of the ”NREL 5MW offshore baseline wind turbine” will be described and

additionally, the respective coordinate system will be explained.

2.1.1 NREL 5MW baseline wind turbine geometry

The ”NREL 5MW offshore baseline wind turbine” is a representative utility-scale multimegawatt wind

turbine. This wind turbine was developed in support of concept studies which are aimed at assessing

offshore wind technology and it is a conventional three-bladed upwind variable-speed variable blade-

pitch-to-feather controlled turbine.

The NREL 5MW model is now commonly used as a reference by research teams throughout the

world [39]. On table 2.1 the more relevant geometry and performance parameters for both full-scale

and model-scale are presented, where the model-scale is scaled using Froude scaling and geometric

similarity, with scaling parameter of λ = 50. This scaling methodology will be described on section 2.2.

Table 2.1: Properties of the full-scale and model-scale NREL 5MW baseline wind turbine [39]

Property Full-scale Model-scale Units
Rated power 5 5.7 [MW ]/[W ]

Rotor diameter 126 2.52 [m]
Hub diameter 3 - [m]

Hub height 90 1.80 [m]
Reynolds no. @ 0.7 Radius 11.5 ×106 35.7 ×103 [−]

The geometry of the blades is described on tables 2.2 and 2.3.

Table 2.2: Airfoil schedule [39]

Airfoil designation Thickness (t/c) Begin Radius (m) End Radius (m)
Cylinder1 100% 1.8 5.98
Cylinder2 100% 5.98 10.15
DU40-A17 40.5% 10.15 15
DU35-A17 35.09% 15 20.49
DU30-A17 30% 20.49 26.79
DU25-A17 25% 26.79 34.22
DU21-A17 21% 34.22 42.47

NACA64-A17 18% 42.47 61.5

The blades are formed by different airfoils. The two innermost airfoil represent cylinders with drag

coefficients of 0.50 (Cylinder1) and 0.35 (Cylinder2) and no lift. After that, the blade is formed by five

airfoils from Delf University (DU) and one from National Advisory Committee for Aeronautics (NACA).

The variables t and c on table 2.2 represent the thickness and the chord of the airfoil respectively.
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Table 2.3: NREL 5MW chord and twist distribution [39]

RNodes (m) DNodes AeroTwst (deg) Chord (m)
2.8667 2.733 13.308 3.542

5.6 2.733 13.308 3.854
8.3333 2.733 13.308 4.167
11.75 4.100 13.308 4.557
15.85 4.100 11.48 4.652
19.95 4.100 10.162 4.458
24.05 4.100 9.011 4.249
28.15 4.100 7.795 4.007
32.25 4.100 6.544 3.748
36.35 4.100 5.361 3.502
40.45 4.100 4.188 3.256
44.55 4.100 3.125 3.01
48.65 4.100 2.319 2.764
52.75 4.100 1.526 2.518

56.1667 2.733 0.863 2.313
58.9 2.733 0.37 2.086

61.6333 2.733 0.106 1.419

The blade node locations, labeled as “RNodes”, are directed along the blade-pitch axis from the rotor

center to the blade cross sections. The element lengths, “DRNodes,” sum to the total blade length of

61.5 m. The aerodynamic twist, is labeled as “AeroTwst”.

2.1.2 Coordinate system

The coordinate system used in this study is a Cartesian coordinate system. The origin of the system is

located at the intersection of the rotation axis and the swept plane of the rotor. The x-axis is pointing in

the opposite direction to the wind direction, while the z-axis is pointing in the vertical upward direction.

Finally, the y-axis is pointing in the horizontal direction resulting in a positive Cartesian coordinate sys-

tem, as shown in fig. 2.1. In this figure also the wind velocity and the rotational direction of the turbine is

indicated by vectors Vwind and Ω respectively.

2.2 Scaling methodology

Experiments are usually performed on model-scale wind turbines where the results should resemble the

full-scale one. In order to achieve that, it is really important to properly scale the dynamic environment

and behaviour of the system considered. The methodology applied by MARIN in previous tests will be

used in this thesis [40] and it will be briefly described. This method is the one used because satisfactory

results where obtained in previously studies performed by MARIN, who has a great experience in the
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Figure 2.1: Coordinate system for the NREL 5 MW baseline wind turbine [23]

floating offshore wind turbine industry.

First of all, model-scale wing turbine will be scaled using Froude’s scaling law in combination with

geometric similarity. The Froude number, Fr, is a dimensionless parameter that quantifies the ratio

between gravitational and inertial forces. This method is the most appropriate one for free and moored

floating structure tests, since the gravitational effect of the water with a free surface predominates. The

effects of other factors, such as viscosity and surface tension are often small such that they can be

neglected [41].

Froude number is defined in eq. (2.1), where V represents the characteristic velocity, g the gravita-

tional constant and L the characteristic dimension.

Fr =
V√
gL

(2.1)

With Froude scaling method, Froude numbers of the full-scale turbine and model-scale turbine are

equalized and with the geometrical similarity using the scaling factor λ = Lf/Lm, where the subscripts

f and m represent the full-scale and model-scale wind turbine respectively, the velocity the wind should

have on the model-scale experiment to have a similar dynamic environment as the full-scale one can be

obtained.
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By implementing Froude scaling most properties of interest, which influence the global dynamic re-

sponse of the system, are scaled accurately, except for the aerodynamic wind loads, as will be discussed

later [40].

The tip speed ratio, TSR is the ratio between the angular velocity multiplied by the radius of the

turbine rotor and the inflow wind velocity. It is defined in eq. (2.2), where R the blade tip radius of the

rotor and Vwind the wind inflow velocity [42].

TSR =
ΩR

Vwind
(2.2)

Maintaining the same TSR between model-scale and full-scale turbine will ensure that the rotational

speed and the corresponding excitation frequencies caused by aerodynamic effects are scaled correctly.

As it was said before, the aerodynamic loads are not scaled accurately with Froude scaling, this is

due to complications with the Reynolds number that can cause mismatch of it in model and prototype.

The Reynolds number, Re, is a dimensionless parameter that quantifies the ratio of inertial forces to

viscous forces within the fluid. Its definition is given in eq. (2.3) where ρ represents the density of the

fluid, V the fluid velocity and µ the dynamic viscosity of the fluid.

Re =
ρV L

µ
(2.3)

While Froude number is the primary scaling parameter in hydrodynamic model tests, the Reynolds

number effects are not scaled properly for large scaling factors. When a model is Froude scaled, its

Reynolds number will be λ1.5 times smaller than the full-scale Reynolds number. The consequence of

this is that the flow at full-scale can be fully turbulent while for the model-scale can be laminar. The

effects on the aerodynamic performance will be discussed in section 2.3.2.

2.3 Turbine Aerodynamics

In this section, the aerodynamics of the turbine will be described base on a 2D airfoil. The airflow around

the wind turbine is three dimensional, but part of the theory to describe the wind turbine performance

relies mainly on two dimensional wing section data.
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2.3.1 Forces acting on a airfoil

The aerodynamic performance is commonly described by three parameters: lift, drag and the moment

generated by the airflow around a foil. The airflow creates a pressure P when acting on the airfoil. This

pressure is perpendicular to it and is generated by the rate of change of momentum of the air molecules

impacting on the airfoil surface. Additionally a shear stress τ tangential to the surface of the airfoil is

generated due to the frictional property of the airfoil. The combination of this two forces generates a

momentum M and resultant force R. This is represent in fig. 2.2.

Figure 2.2: Forces acting on an airfoil [43]

This force R is decomposed in two forces: one perpendicular to the airflow direction called lift L and

other parallel to the airflow direction called drag D. This decomposition is represented in fig. 2.3. The

lift force is dominated by pressure contributions while drag is dominated by frictional forces.

Figure 2.3: Decomposition of resultant force [43]
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Lift and drag as well as the moment can be non-dimensionalized using a reference area S, a refer-

ence lenght l and the free-stream dynamic pressure which is given by eq. (2.4), where the subscript∞

represents the properties of the flow far upstream.

q∞ ≡
1

2
ρ∞V

2
∞ (2.4)

The resulting dimensionless coefficients of lift, drag and moment are given in equations eqs. (2.5)

to (2.7).

CL ≡
L

q∞S
(2.5)

CD ≡
D

q∞S
(2.6)

CM ≡
M

q∞Sl
(2.7)

These expressions are valid for three-dimensional airfoils. The efficiency of an airfoil is commonly

represent with the drag to lift ratio as can be seen in eq. (2.8).

L

D
=
q∞SCL
q∞SCD

=
CL
CD

(2.8)

Another coefficient usually used in airfoil aerodynamics is the pressure coefficient Cp that describes

the pressure in a non-dimensional way. This is done by dividing the pressure by the dynamic pressure

of the free-stream flow, as shown in eq. (2.9).

Cp =
P − P∞
q∞

(2.9)

2.3.2 Boundary Layer

A really important part for the aerodynamics of an airfoil is the boundary layer. It is located close to the

surface of the airfoil, where the viscous forces are relevant. The thickness of the boundary layer varies

and the flow can be laminar or turbulent. When the boundary layer is laminar, the flow is smooth and

regular while in turbulent boundary layer the flow moves randomly and irregular.
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The difference in aerodynamic performance between laminar and turbulent boundary layers is huge.

In fig. 2.4 it can be seen that the turbulent velocity profile is “fatter’, or fuller, than the laminar profile. The

variable ū represents the mean velocity of the flow. For the turbulent profile, from the outer edge to a

point near the surface, the velocity remains reasonably close to the free-stream velocity; it then rapidly

decreases to zero adjacent to the wall. In contrast, the laminar velocity profile gradually decreases to

zero from the outer edge to the surface. The velocity gradients and frictional forces are higher when the

boundary layer is turbulent.

Figure 2.4: Velocity profiles of laminar and turbulent boundary layers

The change between laminar to turbulent flow is called transition. The point where the transition

takes place depends on several variables, like the velocity of the flow or the roughness of the surface.

The xcr is the value of x along the airfoil surface where the transition takes place. This defines a critical

Reynolds number, Rexcr , given in eq. (2.10).

ReXcr =
ρ∞V∞xcr

µ∞
(2.10)

Using the Reynolds number and the boundary layer thickness, the skin-friction coefficient can be es-

timated based on flat-plate theory for both laminar and turbulent flow as given in eqs. (2.11) and (2.12)

[43], where δ is the boundary layer thickness at a certain location x along the airfoil surface, Rex the

Reynolds number at location x from the leading edge of the surface.
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Cflam ≈
1.328√
Re

, δlam ≈
5.0x√
Rex

(2.11)

Cfturb ≈
0.074

Re1/5
, δturb ≈

0.37x

Re
1/5
x

(2.12)

When the velocity is decreasing in the flow direction, an adverse pressure gradient is produced,

whose magnitude has a great influence on the boundary. Depending on the curvature of the airfoil, this

increasing pressure gradient can result in a negative velocity in the boundary layer that can produce the

separation of it as it is shown on fig. 2.5.

Figure 2.5: Effect of pressure gradients on the boundary layer [44]

As it was said before, the state of the boundary layer has a huge impact in the performance of the air-

foil. Laminar boundary layer stability is affected by pressure gradients and Reynolds number. Depending

on the Reynolds number, the laminar boundary layer reacts to pressure gradients in three different ways

as can be seen in figure fig. 2.6.

2.4 Equations

In this section the equations that govern the viscous flows will be presented. The fluid is considered

Newtonian, incompressible and isothermal. The fluid velocity is given by the vector V = (u, v, w)T ,
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Figure 2.6: Reynolds number effects on laminar boundary layer subject to adverse pressure gradient [44]

where u, v and w are the Cartesian components of the velocity vector.The density, static pressure, and

dynamic viscosity are denoted ρ, p and µ respectively. Additionally a fixed spatial Cartesian coordinate

system is assumed in this section.

2.4.1 Navier-Stokes equations

Only the important equations and derivations of the Navier-Stokes (NS) equations are presented in this

sections, for a full detailed derivation see [43].The Navier-Stokes (NS) equations consists of two equa-

tions: the conservation of mass equation and the momentum equation, that are presented on eqs. (2.13)

and (2.14) respectively.

∂ρ

∂t
+∇ · (ρV) = 0 (2.13)

∂(ρV)

∂t
+∇ · (ρVV) = ∇ ·T + ρB (2.14)

where B is the body force vector and T the stress tensor which is given by eq. (2.15),
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T =

(
p+

2

3
µ∇ ·V

)
I + 2µD (2.15)

where I is the identity matrix and D the deformation tensor given by eq. (2.16).

D =
1

2

(
∇V +∇VT

)
(2.16)

The flow is incompressible, which makes the density constant, so the mass conservation equation

and the momentum equation can be written as,

∇ ·V = 0 (2.17)

ρ

(
∂V

∂t
+∇ · (VV)

)
= ∇ ·T + ρB (2.18)

The air is compressible, but for aerodynamics problems where the velocity is much lower than the

speed of sound, the assumption of incompressible flow can be used. This assumption will be used in

this thesis.

The fluid properties can be divided into a mean time dependant part and a fluctuating part, that for

the x axis velocity component translates into eq. (2.19).

ui = ui(x, y, z) + u′i(x, y, z, t) (2.19)

The mean and time fluctuating values have the properties shown in eq. (2.20).

u′ = 0, ū = ū, and f̄ ḡ = f̄ ḡ (2.20)

This method of decomposing flow quantities is used in the derivation of the RANS equations and is

referred to as Reynolds decomposition, and can be graphically seen in figure fig. 2.7.

As was mentioned before, the flow around an object can have two different flow regions: a laminar

and a turbulent region. In laminar flows, the perturbations are dampened by the viscous forces while

on turbulent flows the viscous forces are not strong enough to dampen this perturbations and are domi-

nated by inertial forces.
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Figure 2.7: Reynolds decomposition in mean and time fluctuating values

Two ways of describing the turbulence of the fluid flow is by the turbulence intensity Ti and the turbu-

lence kinetic energy per unit mass k that are defined in eqs. (2.21) and (2.22).

Ti =

√
2
3k

V
(2.21)

k =
1

2

(
u′2 + v′2 + w′2

)
(2.22)

The turbulence kinetic energy is characterized by the Root Mean Square (RMS) of the velocity fluc-

tuations.

2.4.2 Reynolds-Averaged Navier-Stokes (RANS) equations

Simulating the turbulent flow using directly the NS equations requires very fine grids and time steps to

properly model small perturbations present in the flow, which requires large amount of CPU power. In

order to solve this, in many engineering problems it is enough to know the mean flow phenomena, so

Reynolds decomposition is performed and the NS are converted in a more feasible model called the

RANS equations. Applying the Reynolds decomposition to the mass conservation equation (eq. (2.13)),

results in eq. (2.23).
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∇ ·V = 0, and

∇ ·V′ = 0
(2.23)

In the same way, the momentum conservation equation can be written as eq. (2.24).

ρ
∂V̄i
∂t

+ ρ
∂V̄iV̄j
∂xj

= ρf̄i +
∂

∂xj

[
p̄δij + µ

(
∂V̄i
∂xj

+
∂V̄j
∂xi

)
− ρV ′i V ′j

]
(2.24)

These equations are similar to the NS equations except for an extra set of terms in the momentum

equation given by ρV ′i V
′
j , which are known as the Reynolds stresses.

As we can see, there are four independent governing equations, three from the momentum con-

servation equations and one from the mass conservation equation. But there are more than four un-

known variables. These are the mean velocities components V , the mean pressure p, and the Reynolds

stresses. This set of equations is unclosed and cannot be solved [45]. To close the problem, a turbu-

lence model is needed. Some turbulence models will be describe on section 2.4.3.

2.4.3 Turbulence models

As it was said before, in order to close the problem and solve the RANS equations a turbulence model

is needed. There are many of them, but during these thesis just three of them will be used: Spalart-

Allmaras, k − ω SST and KSKL turbulence models.

All this three models are based on the turbulence-viscosity hypothesis first introduced by Boussinesq

in 1877 and has one or two equations depending on the number of turbulence quantities for which the

model transport equations are solved. In this approach the Reynolds stresses are related to the mean

rate of strain of a fluid element as shown in eq. (2.25).

− ρV ′i V ′j = µt

(
∂V̄i
∂xj

+
∂V̄j
∂xi

)
− 2

3
ρkδij (2.25)

In this equation there is a new scalar µt called turbulence viscosity or eddy viscosity.
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2.4.3.A Spalart-Allmaras model

This is a one-equation model that was developed for aerodynamics applications, and just solve a single

transport equation to determine the turbulence viscosity µt. The S-A is a considerable improvement

from the algebraic models (models that do not require the solution of any additional equation, and are

calculated directly from the flow variables) and is a simple alternative to the two-equations models [45].

The SA defines the turbulence viscosity as the product of an auxiliary viscosity ν̃ and an auxiliary

function fv1 as presented in eq. (2.26).

νt = ν̃fv1 (2.26)

In this expression νt is the kinematic turbulence viscosity νt = µt/ρ. The auxiliary viscosity ν̃ follows

the transport equation eq. (2.27).

∂ρν̃

∂t
+

∂

∂xj
(ρν̃Uj)︸ ︷︷ ︸

Convection

= cb1 (1− fv1) ρS̃ν̃ + · · ·︸ ︷︷ ︸
Production

+
1

σ

{
∂

∂xj

[
ρ(ν + ν̃)

∂ṽ

∂xj

]
+ cb2ρ

∂ν̃

xj

∂ν̃

xj

}
︸ ︷︷ ︸

Diffusion

+ · · ·

−
(
cw1fw −

cb1
κ2
ft2

)
ρ

(
ν̃

d

)2

︸ ︷︷ ︸
Dissipation

.

(2.27)

The coefficients and auxiliary functions are based on basis models for shear flows, boundary layer

flow models and transition flow models. The coefficients are as follows:

cb1 = 0.1355, cb2 = 0.622, σ =
2

3
, κ = 0.41

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2

ft2 = ct3 exp
(
−ct3X 2

)
, ct3 = 1.2, ct4 = 0.5

r = min

(
10,

ν̃

S̃κ2d2

)
, g = r + cw2

(
r6 − r

)
, fw = g

(
1 + c6w3

g6 − c6w3

)1/6

(2.28)

The auxiliary functions which are related to the flow close to walls are given by,

S̃ = S + ν̃
κ2d2 fv2, S =

√
2SijSji, X = ν̃

ν

fv1 = X 3

X 3+c3v1
, fv2 = 1− X

1+Xfv1 , cv1 = 7.1
(2.29)

A more detailed description of the Spalart-Allmaras model can be found in [46].
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2.4.3.B k − ω SST model

Many two-equations methods have been proposed where the turbulence kinetic energy k is used as one

of the variables and different choices for the second variable. One of the most widely used is the k − ε

model [47]. This model uses the turbulence dissipation ε as the second variable. In the case of the k−ω

model, the second variable used is the turbulence dissipation rate ω define as ω = ε/k. This model was

first introduced by Wilcox [48].

The k − ε model performs well away from the walls while the k − ω model performs well near them.

Menter combined this two models forming the k − ω Shear Stress Transport (SST) model, which is a

blend between the k − ε model near walls, and k − ω model far from walls [49].

The model turbulence viscosity is given by eq. (2.30)

µt =
ρk/ω

max (1,ΩF2/ (a1ω))
, where a1 = 0.31 (2.30)

In the previous equation, Ω represents the the magnitude of the vorticity defined as Ω =
√

2ωijωij .

The auxiliary function F2 is defined by eq. (2.31) where d is the wall distance.

F2 = tanh


[

max

(
2

√
k

0.09dω
,

500µ

ρd2ω

)]2
 (2.31)

The transport equations for the turbulence kinetic energy k and the turbulence dissipation rate ω are

defined in eqs. (2.32) and (2.33) respectively.

∂ρk

∂t
+

∂

∂xj
[ ρUjk︸ ︷︷ ︸
Convection

− µ+ σkµt)
∂k

∂xj︸ ︷︷ ︸
Diffusion

] = P̃︸︷︷︸
Production

− β∗ρωk︸ ︷︷ ︸
Destruction

(2.32)

∂ωρ

∂t
+

∂

∂xj
[ ρUjω︸ ︷︷ ︸
Convection

− (µ+ σωµt)
∂ω

∂xj︸ ︷︷ ︸
Diffusion

] = γρP̃︸︷︷︸
Prod.

−βρω2︸ ︷︷ ︸
Destr.

+ 2 (1− F1)
ρσω2

ω

∂k

∂xj

∂ω

∂xj︸ ︷︷ ︸
Blending

(2.33)

The auxiliary function F1 is given by eq. (2.34).

F1 = tanh


[

min

[
max

(
2

√
k

β∗dω
,

500µ

ρd2ω

)
,

4ρσω2κ

CDkωd2

]]4
 , (2.34)

where,
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CDkω = max

(
2ρσω2

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
, β∗ = 0.09, κ = 0.41 (2.35)

The production P̃ is limited to prevent the build-up of turbulence in stagnation regions:

P̃ = min (τijSij , 20 · β∗ρkω) (2.36)

The remaining coefficients, β, γ, σk and σω are defined by a blending between the coefficients of the

original k − ω model and k − ε transformed model. Both models are denoted by 1 or 2 respectively. The

blending of both constants is defined by,

φ = F1φ1 + (1− F1)φ2, φ = {β, γ, σk, σω} (2.37)

The values of the coefficients are as follows,

σk1 = 0.85, σω1 = 0.50, β1 = 0.075, γ1 = β1

β∗ −
σω1κ

2
√
β∗

= 0.553

σk2 = 1.00, σω2 = 0.856, β2 = 0.0828, γ2 = β2

β∗ −
σω2κ

2
√
β∗

= 0.440
(2.38)

After several years of experience, the k − ω SST model was slightly modified in 2003 [50]. The

major change is that the strain rate S is used instead of the vorticity Ω. So Ω =
√

2ωijωij is replaced

by S =
√

2SijSij and the resulting expression of the turbulence viscosity µt is converted into equation

eq. (2.39).

µt =
ρk/ω

max (1, SF2/ (a1ω))
(2.39)

Additionally the limiter to prevent the build-up of turbulence in stagnation regions is altered where a

factor 10 instead of 20 is used.

P̃ = min (τijSij , 10 · β∗ρkω) (2.40)

This modified version of the initial k − ω SST model is the one used on this thesis.

2.4.3.C k −
√
kL model

This two-equation model comes from the modelling concept proposed by Rotta [51], which uses an ex-

act transport equation for the turbulent length scale L. Rotta proposed a k − kL with a third derivative

velocities, that was changed to a second derivative velocities as they offer a more attractive modelling

27



framework. Also it was formulated as a k −
√
kL model due to practical considerations and a slightly

superior performance. The major improvement of this model is the better performance for unsteady

flows than other two-equations models proposed before as the k − ω SST model.

Assuming flows with a dominant shear strain normal to the inflow direction, the turbulent length scale

L is defined in eq. (2.41).

kL = −cvt
∣∣∣∣∂U∂y

∣∣∣∣2 L( L

LvK

)2

LvK = κ

∣∣∣∣ ∂U/∂y∂2U/∂y2

∣∣∣∣ (2.41)

Changing the formulation from a kL form to a Φ =
√
kL form, the resulting two equation model is

presented in eqs. (2.42) to (2.44).

∂(ρk)

∂t
+
∂ (ρUjk)

∂xj
= Pk − c3/4µ ρ

k3/2

L
+

∂

∂xj

(
µt
σk

∂k

∂xj

)
(2.42)

∂(ρΦ)

∂t
+
∂ (ρUjΦ)

∂xj
=

Φ

k
Pk

(
ζ1 − ζ2

(
L

LvK

)2
)
− ζ3ρk +

∂

∂xj

(
µt
σΦ

∂Φ

∂xj

)
(2.43)

µt
ρ

= vt = c1/4µ Φ; Pk = µtS
2; S =

√
2SijSij ; Sij =

1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(2.44)

The values of the model coefficients are as follows,

cµ = 0.99, κ = 0.41, ζ1 = 0.8, ζ2 = 1.47
ζ3 = 0.0288, σk = 2/3, σΦ = 2/3

(2.45)

In order to be able to integrate the model to the viscous sublayer, additional near wall damping terms

are required. The following Viscous Sublayer Model (VSM) terms are added to the right hand sides of

the k and Ψ equations, respectively, where d is the distance to the nearest surface.

V SMk = −2µ k
d2 ; V SMΦ = −6µ Φ

d2 fΦ

fΦ = 1+cd1ξ
1+ξ4 ; ξ =

√
0.3·k·d
20·v ; cd1 = 4.7

(2.46)

Turbulence models need additional adjustments to flow situations for which they have not been cal-

ibrated initially. In this case is for adverse pressure gradient regions and for stagnation regions. Both

problems can be handled with one modification to the eddy viscosity, with different constants outside

and inside the boundary layer. This modifications are presented in eq. (2.47).
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νt = min
(
c
1/4
µ Φ, a1kS

)
; a1 = aSST1 fb + (1− fb) aREAL1

fb = tanh

[(
20·(c1/4µ Φ+v)
κ2S·d2+0.01v

)2
]

; aSST1 = 0.32; aREAL1 = 0.577
(2.47)

Similar to the k − ω SST model, the blending function fb is one inside the boundary layer and zero

outside.

There are also added length scale limiters in order of avoiding large or small values of the length

scale ratio L/LvK , the following limiters are applied:

LvK = κ
∣∣∣ U ′U ′′ ∣∣∣ ; |U ′| = S; |U ′′| =

√
∂2Ui
∂x2
k

∂2Ui
∂x2
j

L/cl1 < LvK < cl2κy; cl1 = 10 cl2 = 1.3
(2.48)

A deeper description of the model can be found in [52].

2.4.4 Transition model γ −Reθ

In the majority of today’s engineering CFD simulations, the important effect of laminar-turbulent tran-

sitions is not included. The reason for this is that transition modeling does not offer the same wide

spectrum of CFD-compatible model formulations that are currently available for turbulent flows. There

are several reasons for this. First of all, transition occurs by different mechanism in different applications

(flow instability bypass transition or separation-induced transition) that are difficult to introduce in just

one model. Another reason is that RANS equations do not lend themselves easily to the description of

transition flows, where both linear and nonlinear effects are relevant and in RANS equations the effects

of linear disturbance growth are eliminated.

There have been some proposals of transition models for CFD computations but they have problems

related to cost or compatibility.

The γ−Reθ transition model fits well with CFD computations and is based on empirical correlations.

The central idea of this approach is the Van Driest and Blumer’s vorticity Reynolds number that can be

used to provide a link between the transition onset Reynolds number from an empirical correlation and

the local boundary-layer quantities. It is defined as follows,

Rev =
ρy2

µ

∣∣∣∣∂u∂y
∣∣∣∣ =

ρy2

µ
S (2.49)

Where y is the distance to the nearest wall.
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The maximum value of the vorticity Reynolds number is the momentum-thickness Reynolds number

and it is scaled to have a maximum value of one for a Blasius boundary layer.

Reθ =
max (Rev)

2.193
(2.50)

The present transition model is built on a transport equation for intermittency γ, which can be used

to trigger transition locally. In addition to the transport equation for the intermittency, a second transport

equation is solved for the transition onset momentum-thickness Reynolds number Reθ. This is required

to capture the non-local influence of the turbulence intensity, which changes due to the decay of the

turbulence kinetic energy in the freestream, as well as due to changes in the freestream velocity outside

the boundary layer.

The transport equation for the intermittency γ is presented in eq. (2.51).

∂(ργ)

∂t
+
∂ (ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(2.51)

The transitions sources are defined as follows:

Pγ1 = Flength ca1ρS [γFonset ]
0.5

(1− ce1γ) (2.52)

where S is the strain-rate magnitude. Flength is an empirical correlation that controls the length of

the transition region, and Fonset controls the transition onset location. The destruction/relaminarization

source is defined as follows:

Eγ = ca2ρΩγFturb (ce2γ − 1) (2.53)

The transition onset is controlled by the following functions:

Fonset1 =
Rev

2.193 · Reθc
(2.54)

Fonset 2 = min
(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
(2.55)

RT =
ρk

µω
(2.56)
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Fonset 3 = max

(
1−

(
RT
2.5

)3

, 0

)
(2.57)

Fonset = max (Fonset2 − Fonset3 , 0) (2.58)

Reθc is the critical Reynolds number where the intermittency first starts to increase in the boundary

layer. This occurs upstream of the transition Reynolds number R̃eθt, and the difference between the two

must be obtained from an empirical correlation. Both the Flength and Reθc correlations are functions of

R̃eθt. The correlations are presented in [53].

The constants for the intermittency equation are:

ce1 = 1.0; ca1 = 2.0 ce2 = 50; ca2 = 0.06; σf = 1.0 (2.59)

The transport equation for the transition momentum-thickness Reynolds number R̃eθt is presented

in eq. (2.60).

∂
(
ρR̃eθt

)
∂t

+
∂
(
ρUjR̃eθt

)
∂xj

= Pθt +
∂

∂xj

[
σθt (µ+ µt)

∂R̃eθt
∂xj

]
(2.60)

The source term is defined as follows:

Pθt = cθt
ρ
t

(
Reθt−R̃eθt

)
(1.0− Fθt)

t = 500µ
ρU2

(2.61)

where t is a time scale, which is present for dimensional reasons.

The blending function Fθt is used to turn off the source term in the boundary layer and allow the

transported scalar R̃eθt to diffuse in from the freestream. Fθt is equal to zero in the freestream and one

in the boundary layer. The Fθt blending function is defined as follows:

Fθt = min

(
max

(
Fwake · e−( y8 )

4

, 1.0−
(
γ − 1/ce2

1.0− 1/ce2

)2
)
, 1.0

)
(2.62)

θBL = R̃eθtµ
ρU ; δBL = 15

2 θBL; δ = 50Ωy
U · δBL

Reω = ρωy2

µ ; Fwake = e−( ReωIE+5 )
2 (2.63)

The model constants for the R̃eθt equation are

cθt = 0.03; σθt = 2.0 (2.64)
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The empirical correlation for transition onset is based on the following parameters:

λθ =
ρθ2

µ

dU

ds
(2.65)

Tu = 100

√
2k/3

U
(2.66)

Where dU/ds is the acceleration along the streamwise direction. The correlations are presented

in [53].

2.5 Verification

Verification studies determine if the results obtained with the numerical methods are reliable. Verification

is a mathematical exercise to verify the code and the solution.

There are three errors usually present on numerical calculations: round-off, iterative and discretiza-

tion error.

The round-off error is due to the finite precision of computers. If double or quadruple precision is

used, this error can be considered negligible. This error tends to increase with the grid refinement, but

in this thesis all the calculations are done with double precision, so it will be considered negligible.

The iterative error is due to the non-linearity of the equations that are solved.

For steady flows, the iterative error can be studied with the convergence history of the simulation.

In this study, the L2 and L∞-norm of the non-dimensional residuals of the flow quantities are used to

analyze the iterative error.

The L2-norm is the RMS error over the whole domain of the absolute change of the residuals of a

given variable between successive iterations,

L2 (resφ) =

√√√√∑np
i=1

(
|resφi |

2
)

np
(2.67)

where resφ is the non-dimensional change of the residual of a given variable, and np the total number

of grid cells.

The L∞-norm of the residuals is defined as the maximum absolute change in the whole domain of
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the residuals of a given variable between iterations.

The variables analyzed are the three velocity components, the pressure and turbulent quantities

as the turbulent kinetic energy k. These quantities are non-dimensionalized using undisturbed flow

properties. For the iterative error to be negligible the residuals must be two to three orders below the

discretization error, but preferably as low as possible.

Also, apart from the convergence residuals, it is determined if the quantities in study, like CT or CP

are converged sufficiently. The fluctuation of the quantities are monitored for the last 200 iterations and

quantified as a percentage of the final iterative value,

Uφ = 100×max

(
|φi − φend |
|φend |

)
, (2.68)

The resulting percentage must be at least two to three orders below the discretization uncertainty.

The discretization error usually is the higher order error. It is due to the discretization of the RANS

equations to a set of algebraical equations. This error is reduced with grid refinement on steady flows.

Doing a refinement study could give insight in the discretization error of the problem.

For steady computations, to study the discretization error the numerical uncertainty Uφ of a solution

φi is estimated where the exact solution φexact is unknown. In this thesis, the method described in [54]

will be used.

The goal of this study is to define an interval that contains the exact solution with a 95% confidence.

φi − Uφ ≤ φexact ≤ φi + Uφ (2.69)

The numerical uncertainty for an integral flow quantity φ is defined in eq. (2.70).

Uφ = Fs|ε| (2.70)

where Fs is a safety factor and ε is the estimated discretization error. This is estimated with Richardson

extrapolation (RE), and the discretization error is determined by,

ε ' δRE = φi − φ0 = αhpi (2.71)
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where φ0 is the estimate for the exact solution, φi represents any integral of local quantity, α is a

constant, h is the typical cell size, and p is the observed order of accuracy.

The definition of h is a geometrical problem where a single parameter is used to define the typical

cell size of the grids. This requires that the grids must be geometrically similar, which means that the

grid refinement ratio must be constant in the complete domain and the grid properties (deviations from

orthogonality or skewness) independent of the grid refinement. There are several methods to describe

the typical cell size [55].

The typical cell size hi is defined as the inverse of the number of cells in a grid,

hi =

(
1

Ncells

) 1
n

(2.72)

where n is the space dimension of the grid (1,2 or 3).

To determine the discretization error ε, the determination of φ0, α and p is needed, which are calcu-

lated with the least square method using at least four grids. The determination of p is really sensitive

to perturbations, so other alternatives to estimate the error are applied, like the ones presented on

eqs. (2.73) to (2.75).

δ02
RE = φi − φ0 = α01h

2 (2.73)

δ12
RE = φi − φ0 = α11h+ α12h

2 (2.74)

δ∆M
=

∆M(
hng
h1

)
− 1

(2.75)

where hng
h1

is known as the relative-step size and ∆M is the data range given by,

∆M = max (|φi − φj |) 1 ≥ i, j ≥ ng, (2.76)

where ng represents the total number of grids. The relative-step size is given by eq. (2.77) for 3-

dimensional grids.

h1

hi
= 3

√
ni
n1

(2.77)
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By using eq. (2.70) and the error estimator ε the numerical uncertainty can be obtained. Depending

on the value of p the uncertainty can be determined using the following conditions,

• 0.95 ≤ p ≤ 2.05 : Uφ = 1.25δRE + Us

• p ≤ 0.95 : Uφ = min
(
1.25δRE + Us, 3δ

12
RE + U12

s

)
• p ≥ 2.05 : Uφ = max

(
1.25δRE + Us, 3δ

02
RE + U02

s

)
• For oscillatory convergence: Uφ = 3δ∆M

,

• For anomalous behavior: Uφ = min
(
3δ∆M

, 3δ12
RE + U12

s

)
,

where Us, U02
s and U12

s are the standard deviations of the least squares fits and 1.25 and 3 represent

the safety factors.
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3.1 Numerical tools

The two software used for the numerical calculations are HEXPRESS for the grid generation and Re-

FRESCO for RANS computations. This software will be described in this section.

3.1.1 HEXPRESS

In this study, the grids are generated with HEXPRESS [56]. This software generates unstructured hex-

ahedral grids automatically and implements hanging nodes for refinements. This software is really easy

to use for the user and the amount of time spent is significantly lower compared to the structured grid

generator tools [57].

This also has some disadvantages. The quality of the grid is lower, which implies that a higher

number of cells is required to obtain an adequate grid quality. Additionally, the grids generated contain

hanging nodes that are usually located on the edges where refinement is implemented. These hanging

nodes decrease the quality of the mesh due to additional geometric eccentricity.

A number of grid characteristics can be calculated to know if the grid quality is adequate or not. The

most important parameters are the orthogonality and the equi-angular skewness, whose expressions

are presented on eqs. (3.1) and (3.2) respectively.

Orthogonality = 90− acos (min (Γijk)) , (3.1)

Equiangular skewness = max

(
(Tmax − Te)

180− Te
,

(Te − Tmin)

Te

)
, (3.2)

Γijk = hi · (hj × hk) , for i 6= j 6= k (3.3)

where Tmin and Tmax are the minimum and maximum angle of a face or cell respectively. Te is the

angle of an equiangular face cell, 90 degrees for a quadrilateral face or hexahedral cell. Γijk is the mixed

product of the unit vectors which link the centroids of two opposite faces of a hexahedral cell, as shown

in fig. 3.1.

A good grid to implement ReFRESCO’s CFD code should have orthogonality bigger than 10 degrees

and an equi-angular skewness lower than 0.9.
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Figure 3.1: Unit vectors used for determination of orthogonality [57]

3.1.2 ReFRESCO

ReFRESCO is a viscous-flow CFD code that solves multiphase (unsteady) incompressible flows with the

RANS equations, complemented with turbulence models, cavitation models and volume-fraction trans-

port equations for different phases [58]. A finite-volume approach with cell-centered variables is used to

discretize the equations with a strong-conservation form and a pressure-correction equation based on

the SIMPLE algorithm to ensure mass conservation [59]. First and second order backwards schemes

are used for the time integration where at each time step, the non-linear system of the velocity and pres-

sure is linearized using Picard’s method, using a coupled or segregated approach. The coupled linear

system is then solved with a matrix-free Krylov subspace method using a SIMPLE-type preconditioner.

On the other transport equations a segregated approach is always used. The implementation is face-

based. Other CFD features as moving, sliding or deforming grids and automatic grid refinement can be

used in the code. For turbulence modelling, RANS/URANS, SAS, DES, PANS and LES approaches can

be used. To parallelize the code MPI and subdomain decomposition is used, and runs on Linux worksta-

tions and HPC clusters. ReFRESCO is currently being developed, verified and validated at MARIN (in

the Netherlands) in collaboration wit IST (in Portugal), USP-TPN (in Brasil), TUDelft (in the Netherlands)

and UOS (in UK).

3.2 Discretization of the equations

In eq. (3.4) a general conservation equation for an arbitrary quantity φ is presented. The momentum and

turbulence equations are solved with this general equation, replacing φ with the velocity vector V for the

momentum equation or the respective variable for the turbulence equation (ν̃ for Spalart-Allmaras or k
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and
√
kL for k −

√
kL model), solving the equation one or two times.

∂

∂t

∫
V
ρφdV︸ ︷︷ ︸

Time dependent term

+

∫
S
ρφV · ndS︸ ︷︷ ︸

Convective term

=

∫
S

Γ∇φ · ndS︸ ︷︷ ︸
Dissipation terms

+

∫
V
qφdV︸ ︷︷ ︸

Source term

(3.4)

In this equation ρ is the density, n the normal outward unit vector, Γ the diffusive coefficient (viscosity

µ in case of the momentum equation), and qφ represents a source or sink term. For a steady calculation,

the time dependant term disappears.

All this terms are discretized using different methods that will be described next.

3.2.1 Integrals discretization

The integral form of eq. (3.4) contains surface and volume integrals. For the volume integrals, the

variable values at the centre of each cells are considered as a proper average for the cell and the

integral is discretized as follows,

∫
V
φdV ≈ φc∆V (3.5)

where φc is the integrand value of the variable at the centre of the cell and ∆V is the cell volume. On

the same way, the surface integrals are discretized as follows,

∫
S
φdS ≈

Nf∑
i=1

φfiSfi (3.6)

where φfi is the integrand value at the surface obtained by interpolation of the neighboring cell center

values, Sfi is the face surface of the cell and Nf is the number of faces in the cell. The volume and face

surface area of the cell are calculated as described in the next section.

3.2.2 Cell Geometry definition

For each cell volume, the face surface and the location of the center is needed. Consider a three-

dimensional polyhedral volume element with Nf cell faces, where every cell face Sf is generated by v

line segments Nv that connect the vertices. The face center xf is calculated by dividing the face surface

in p = Nv − 2 triangles. Each triangle denoted by kp, consists of three vertices (x1, xi and xi−1, with

i = 1, 2, ..., Nv and Nv ≥ 3). The area and the centroid are calculated using eqs. (3.7) and (3.8).
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Ak =
1

2
|(xi − x1)× (xi−1 − x1)| (3.7)

xk =
1

3
(x1 + xi + xi−1) (3.8)

With fig. 3.2 it can be easier to understand geometrically what has been done to calculate the surface

areas and centroid.

Figure 3.2: Representation of volume element (left) and its face (right) [55]

The face center can now be obtained as the average of the centers of each triangle weighted by the

area of the triangle:

xf =

∑Nk
k=1Akxk∑Nk
k=1Ak

=
1

3

∑Nv
i=3 |(xi − x1)× (xi−1 − x1)| (x1 + xi + xi−1)∑Nv

i=3 |(xi − x1)× (xi−1 − x1)|
(3.9)

The surface vector of the cell faces Sf is given by the sum of the triangles areas Ak,

Sf =
1

2

Nv∑
i=3

|(xi − x1)× (xi−1 − x1)| (3.10)

With the magnitude and the location of the face vector, the face unit normal vector can be defined

(eq. (3.11)). Using the divergence theorem, the cell volume can be calculated (eq. (3.12)).

nf =
Sf
|Sf |

, Sf = nf |Sf | (3.11)

∆V =

∫
V
dV =

1

3

∫
V
∇ · xdV =

1

3

∫
S

x · ndS ≈ 1

3

Nf∑
i=1

xfi · Sfi (3.12)

Finally the location of the cell center is determined as the average of the face centers weighted by

the area of each face,
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xc ≈
∑Nf
i=1 xfiSfi∑Nf
i=1 Sfi

(3.13)

The next step is to discretize the terms in the integral equations and it will be described in the next

sections.

3.2.3 Gradients

For the spatial discretization in eq. (3.4), it is needed to refer to the variables quantities at the cell center

and also to the gradients of this quantities. With the divergence theorem, the gradients of an arbitrary

quantity φ from the cell surfaces can be determined. This theorem is given by eq. (3.14).

∫
V
∇φdV =

∫
S
φ · ndS (3.14)

This leads to eq. (3.15):

(∇φ)c ≈
1

∆V

Nf∑
i=1

φfiSfi (3.15)

where fi denotes the specific value at the cell faces i.

3.2.4 Convective terms

The convective term from eq. (3.4) describes the convection of flow property φ. For high Reynolds num-

ber flows the convective term is much more dominant than the diffusive term, therefore it is of importance

that discretization of this term is done while keeping the discretization error as small as possible.

The flow property φ and velocity V are needed at the cell faces to discretize the convective term, as

well as the face surface Sfi. The discretization of the convective term is shown on eq. (3.16).

∫
S
ρφV · ndS ≈

Nf∑
i=1

ρφfi (Vfi · Sfi) (3.16)

An interpolation to the flow variables at the cell centre must be performed to obtain the flow variables

at the cell faces, what is called a convection scheme.

Various convection schemes are available, each with a different level of accuracy, stability conditions

and computational efficiency. The four interpolation methods commonly used in CFD codes will be dis-

cussed here, as the Central Difference Scheme (CDS), Upwind Difference Scheme (UDS), the blending

43



scheme, and the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme.

To better understand the different schemes, fig. 3.3 is represented. Cuu represents the second up-

stream cell centroid, Cu the first upstream cell centroid, and Cd the downstream cell centroid. The

distance from the cell-centers to the face f is given by S.

Figure 3.3: Flux representation on a grid [23]

The CDS makes use of the flow variable upwind and downwind from the respective cell-face. The

variable value φf i at the face centroid is given by,

φfi = λφu + (1− λ)φd (3.17)

where λ is an interpolation coefficient defined as,

λ =
S2

S1 + S2
(3.18)

This is based on a Taylor series expansion and it is second order accurate. The UDS method has a

first order accuracy, where the face value is given by the value of the face upwind. It is a CDS method

with λ = 1.

φfi = φu (3.19)

The blending scheme combines this two methods with a blending coefficient β that goes from 0 to 1.

φfi = βφCDSfi + (1− β)φUDSfi (3.20)
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Finally, the QUICK method is a parabolic interpolation which expression for φf i is defined in eq. (3.21).

φfi = φuλ
[
S2
f (φd − φu) + Sf (1− Sf )∇φu · ddu

]
(3.21)

The four methods discussed are explained extensively in [60].

3.2.5 Diffusive terms

The diffusive term is a surface integral describing the gradient at the surface. The gradient is discretized

analogous to the procedure use in section 3.2.4, which results to the following discretization,

∫
S

Γ∇φ · ndS ≈
Nf∑
i=1

Γfi(∇φ · n)fiSfi ≈
Nf∑
i=1

Γfi (∇φfi · Sfi) (3.22)

The gradients at the face centers are needed and ReFRESCO can calculate the gradients either by

interpolation of the gradients at the neighboring cell centers (eq. (3.23)), or by dividing the difference of

the variable values at the neighboring cell centers by their distance |df | (eq. (3.24)).

(∇φ)fi = αf (∇φ)Cu + (1− αf ) (∇φ)Cd (3.23)

(∇φ)fi =
φCd − φCu
|df |

(3.24)

In non-orthogonal grids, the above approaches may compute the gradients in a direction which de-

viates from the unit normal vector of the cell-face. This difference introduces a constant error which will

not vanish with grid refinements. Extra measures have to be taken to reduce this error. ReFRESCO has

two types of correction methods which are not discussed here. See [60] for more information.

3.2.6 Source terms

The source term describes the effect of a source qφ in integral form. The source is working on the

volume of the cell considered and the integral can therefore be expressed as the source at the cell

center multiplied by the volume of the specific cell as shown in eq. (3.25).

∫
V
qφdV ≈ qφc∆V (3.25)
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3.2.7 Eccentricity

For the discretization of the governing equations, ReFRESCO needs the integrand values at the cell

faces φf for the surface integrals. Also, variable values at the cell faces are needed to compute gradi-

ents at the cell centroid. Usually, φf is calculated using linear interpolation between two neighboring cell

centers and for non-orthogonal grids the position of the computed face variable deviates from the loca-

tion of the face centroid (see fig. 3.3). This deviation is called eccentricity and can introduce a constant

error in the numerical calculations if it is not corrected.

To correct this error, the location of the interpolated value xe is deviated to the location of the face

centroid xf , which results on an extra term in the calculation of φf as it is shown in eq. (3.26).

φf = φe + (∇φe · ef ) (3.26)

where ef is the eccentricity vector defined by

ef = xf − [αfxu + (1− αf ) xd] = xf − xe (3.27)

where αf is an interpolation factor.

3.3 Solution of the equations

The problem to be solved is a coupled system of equations. There are two methods that ReFRESCO

uses to solve this system in its discrete form: coupled and segregated method. The coupled method

solves the system of equations for all variables simultaneously while the segregated approach solves

each equation for its dominant variable, treating the other values as known. In this thesis, the segregated

method is the one used, so the coupled method will not be explained.

The non-linearities and higher-order corrections like the discretized convective term of the momen-

tum equation given by eq. (3.28) needs to be solved iteratively. This process is performed with an

outer-loop, which for the convective term results in eq. (3.29).

Nf∑
i=1

ρVfi (Vfi · Sfi) (3.28)
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Nf∑
i=1

ρV kfi (Vfi · Sfi)
k−1 (3.29)

where the subscripts k and k−1 represent the current and previous outer loop iterations respectively.

The eccentricity and other higher order corrections are also solved in the outer-loop.

After that, a linear system of equations for each variable, the velocity components and the required

variables for the turbulence model are solved in a number of inner-loops. Firstly, the three velocity com-

ponents are determined, then the pressure is corrected (see section 3.32) and finally the turbulence

quantities are obtained in one or two extra inner-loops depending on the number of variables of the

model. Finally, all this process is repeated that consists in the outer-loop.

To stop the inner- and outer-loops, there are different criterions. It can stop when it reaches a num-

ber of iterations determined by the user or when the solution reaches a required level of convergence,

looking at the L2- or L∞-norm residuals. On fig. 3.4 is presented a schematic of the solution process.

More information on the applied solution methods can be found in [61].

3.3.1 Under relaxation

To improve the convergence stability of the solution it is necessary to limit the change in each variable

from one outer iteration to the next. A huge change of the variables from one iteration to the next can

slow down the process or even prevent from convergence. This limitation in the change is done with

under-relaxation. With under-relaxation, the variable to be solved is expressed as a combination be-

tween the old and new solution, as shown in eq. (3.30).

φ = φold + β
(
φnew − φold

)
(3.30)

Where β is a variable that can be chosen between 0 and 1. Selecting the correct value for β and

thus the amount under-relaxation is largely empirical.

3.3.2 Pressure correction

When the momentum equations are solved sequentially, the set of algebraic equations for each compo-

nent of the momentum is solved in turn, treating the grid point values of its dominant velocity component
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Figure 3.4: Schematic of solution process used by ReFRESCO [23]

as the sole set of unknowns. The pressure field that is used comes from the previous outer loop iteration,

so the velocities that are obtained do not normally satisfy the discretized continuity equation. To ensure

that, the pressure field needs to be corrected. This is done using the Semi Implicit Method for Pressure

Linked Equation (SIMPLE) method that uses the Poisson equation given by eq. (3.31) and consists of

three steps:

∂2P

∂x2
i

= −ρ ∂

∂xi

[
∂VjVi

∂xj

]
(3.31)

• Step 1: Solve momentum equations using an initial or a previously computed pressure field Pn−1.

This results in an initial prediction of the velocity field V∗.

• Step 2: Solve the Poisson equation using V∗ to compute the pressure correction P′ at the new

iteration step.

• Step 3: Correct the velocity field using the corrected pressure (P = Pn−1 + P′)
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4.1 Domain

The geometry of the blades of NREL 5MW wind turbine was discussed in section 2.1.1. The hub of the

turbine is cylindrical shaped with spherically blunted tangent ogive shaped ends, in order to minimize

the curvature variation which may induce flow separation. It has a diameter of 200 mm and a length of

1040 mm at model-scale as shown in fig. 4.1.

Figure 4.1: Dimensions of the hub at model-scale taken from [23]

The computational domain consists of a cylindrical volume in which the turbine is placed as shown in

fig. 4.2. The total length of the cylindrical domain and its radius are defined as a multiple of the turbine

diameter. The origin of the coordinate system and the location of the turbine is at 1/5 the length of the

cylinder.

4.2 Boundary Conditions

Four boundary conditions are applied to the domain. At the outflow boundary region (B in fig. 4.2) Neu-

mann boundary conditions are applied, where the normal gradients of all quantities are zero as shown
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Figure 4.2: Dimensions of the turbine domain taken from [23]

in eq. (4.1).

∂V

∂~n
=
∂p

∂~n
=
∂k

∂~n
=
∂ω

∂~n
=
∂γ

∂~n
=
∂Reθ
∂~n

= 0 (4.1)

where ~n is the outward normal unit vector.

A no-slip and impermeability boundary condition is applied at the surface of the turbine. This bound-

ary condition means that it is impossible for the flow to penetrate the surface and, as the flow is viscous,

the interaction between the surface and the flow creates a zero velocity at the surface. For the pressure

P , intermittency γ and local transition onset momentum thickness Reynolds number Reθ, Neumann

boundary conditions are applied. . In addition, the turbulence kinetic energy k is set equal to zero and ω

is specified at the near-wall cell center.

At the inflow boundary region of the domain (A in fig. 4.2), the velocity is set to be the wind velocity,

so V = (vwind, 0, 0)
T . The pressure is extrapolated from the interior assuming zero normal derivative

(Neumann boundary condition) and the turbulence variables and transition variables are set depending

on the model.

The last boundary condition is applied at the wall of the cylindrical domain (B in fig. 4.2). At this wall

a pressure boundary condition is applied, which requires the pressure to be constant at the boundary.

For the rest of the variables, Neumman boundary conditions are applied.
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4.3 Turbine Motion Modelling

Considering the origin x0 of a non-inertial body-fixed reference frame in which a particle position X is

given by,

X = x + x0 (4.2)

where x is the position of the particle in the body-fixed frame. With the differentiation of the velocities

the following expression can be obtained,

V = U +
dx0

dt
+ Ω× x = U + Vg (4.3)

U represents the velocity relative to the body-fixed reference frame, dx0

dt the translation velocity and

Ω× x the rotation velocity of the body-fixed reference frame itself. The acceleration is given by the total

derivative,

DV

Dt
=

DU

Dt
+
d2x0

dt2
+
dΩ

dt
× x + 2Ω×U + Ω× (Ω× x) (4.4)

There are five new terms that have to be taken into account for the conservation equations when

a non-inertial frame is used. This terms are the acceleration of origin of the non-inertial reference

frame, the angular acceleration effect, the Coriolis acceleration, and the centripetal acceleration respec-

tively [62].

There are several methods available to account for the rotative motion, either with inertial or non-

inertial frames [62],

• Relative-Formulation (RFM): the RANS equations are written and solved in the moving or relative

reference frame. Extra volumic terms, or bodyforces have to be considered.

• Absolute-Formulation (AFM): the RANS equations are solved in the moving reference frame but

written in terms of absolute or inertial reference frame quantities.

• Moving-Grid-Formulation (MVG): the RANS equations are written and solved in the earth-fixed

reference frame. Due to the motion of the objects, the equations are inherently unsteady, even for

steady motions.

The AFM is the method used in this thesis, therefore the additional velocity terms have to be included

as well in the governing equations. The integral form of the mass conservation equation then becomes,

∫
S

(V −Vx0
) · ndS = 0 (4.5)
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where Vx0
us the velocity vector at the origin of the non-inertial body-fixed reference frame, and the

momentum equation,

∫
S

∂V

∂t
dV +

∫
S

[ρV (V −Vx0
) · n] dS =

∫
S

(ν + νt)
[(
∇V +∇VT

)]
· ndS + · · ·

−
∫
V
∇
(
p+

2

3
ρk

)
dV + · · ·

−
∫
V
ρ(Ω×V)dV + · · ·

+

∫
V
ρBdV

(4.6)

Since all terms are expressed in the inertial reference frame, the boundary conditions are expressed

in the inertial reference frame. By using this method, the flow can be solved, in principle, using steady

RANS.

4.4 Grid topology

The initial cell size is defined by the turbine diameter. The initial grid is refined toward the geometry of

the turbine until a sufficiently refined cell size is obtained at the surface of the turbine blade. Moreover,

the grid is refined near the surface of the turbine in order to model properly the viscous layer, based on

the dimensionless wall distance y+ to determine the initial cell size at the turbine surface. To properly

model the flow near the wall y+ typically needs to be below one. The initial size ∆S is determined with

eq. (4.7).

∆S =
y+µ

ρVfric
(4.7)

where Vfric is the frictional velocity at the surface of the turbine.

4.5 Post-processing

The results of the three-dimensional computations consist of the flow field around the turbine including

quantities such as velocity, pressure and friction. In addition to these quantities both the forces and

moments acting on the turbine blades are calculated. Both the thrust and power coefficients of the

turbine can be computed by use of these forces and moments as follows:

CT =
Fx

1
2ρV

2A
(4.8)
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CP =
MxΩ

1
2ρV

3A
(4.9)

where Ω is the angular velocity and A the swept area of the turbine given by A = D2π/4.

The pressure distribution is expressed by means of the pressure coefficient Cp given by,

Cp =
p− p∞

1
2ρ(V 2 + (Ωr)2)

(4.10)

where V is the air inflow velocity, Ω the angular velocity and r the radius of the turbine.

Another important quantity in order to determine transition is the friction coefficient Cf given by,

Cf =
τy
|τy|

√
τ2
x + τ2

y + τ2
z

1
2ρV

2
(4.11)

where τx, τy and τz are the friction force components. The factor τy
|τy| is used to take into account the

direction of the flow.
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5.1 Comparison for NREL 5 MW full-scale and model-scale

In this section the RANS computations with ReFRESCO on the full-scale and model-scale NREL 5 MW

baseline wind turbine is performed. To scale the wind velocity, Froude-scaling is used as it was dis-

cussed before, keeping the geometry the same. An inflow velocity of Vw = 2m/s is used for model-scale

conditions while an inflow velocity of Vw = 14.1m/s is used for full-scale conditions. The turbulence

model used is the k − ω SST 2003.

In fig. 5.1 the turbulence viscosity is represented at different sections of the blade for both full-scale

and model-scale conditions. With this figure we can clearly see the difference in the flow conditions.

At full-scale conditions transition occurs close to the leading edge, which enables the flow to remain

attached to the surface when subject to large adverse pressure gradients. For the model-scale, the ad-

verse pressure gradient makes the flow to separate after which transition occurs to the unsteady nature

of the flow in the wake-field.

Figure 5.1: Turbulence viscosity at various sections of the blade for full-scale and model-scale NREL 5 MW baseline
wind turbine at TSR = 7.0

This can also be observed looking at the friction and pressure coefficients for both turbines. On

fig. 5.3, the skin-friction coefficient is bigger at model-scale than at full-scale along the blade, as for

the full-scale the flow is fully turbulent, while at the model-scale there is transition between laminar and

turbulent flow. Skin-friction coefficient is higher for laminar flow. For the pressure coefficient, as shown

in fig. 5.2, it is the opposite: it is higher at full-scale than at model-scale along the blade.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Cp at model-scale and full-scale for different blade positions at TSR = 7
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Cf at model-scale and full-scale for different blade positions at TSR = 7

In fig. 5.4 (a)-(c), the limiting streamlines for model-scale at the suction side of the blade are shown.

Due to the laminar character of the flow at model-scale the blade is in stalled condition over the full range

of TSRs.
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fig. 5.4 (d)-(e), the limiting streamlines for full-scale at the suction side of the blade is presented. In

this case, the flow can be considered fully turbulent as the limiting streamlines are on the airflow direc-

tion (no attached flow). Separation occurs at low TSRs only due to heavily loaded blades and large local

angles of attack.

(a) Model (b) Model (c) Model (d) Full (e) Full (f) Full

Figure 5.4: Limiting streamlines for model-scale and full scale NREL 5 MW wind turbine at different TSR

The CT and CP at full-scale and model-scale are presented in figs. 5.5 and 5.6 and they are com-

pared with Michel Make’s results [23] in order to determine if there is a dramatic change on the results

due to the different ReFRESCO versions used for the simulations. Michael Make used version 1.3 back

in 2014 while version 2.6 is used on this thesis.
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(a) Model-scale (b) Full-scale

Figure 5.5: CT at model-scale and full-scale for different TSR

(a) Model-scale (b) Full-scale

Figure 5.6: CP at model-scale and full-scale for different TSR

As it can be seen, the results calculated with 2.6 and 1.3 versions are really similar for the full-scale

turbine while for the model-scale there is a slightly difference for high TSR, that is bigger for the CP

coefficient. CP is really sensitive to changes.

Comparing this results with the experimental results, it can be observed in fig. 5.7 that, for the ex-

periments, the CP is negative at model-scale while for the calculations it is positive. Different turbulence

models will be tried as well as a transitional model in order to determine which is the best to model the

flow.
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Figure 5.7: Thrust and power coefficients experimental data as function of TSR for model-scale NREL 5MW base-
line wind turbine

5.2 NREL 5 MW model-scale at design TSR

This section is focused on the NREL 5 MW model-scale at TSR = 7, that it is the design TSR of the

turbine. A refinement study will be performed that will follow to a verification procedure, a comparison

between three different turbulence models and a transitional model will be used.

5.2.1 Refinement study

In order to determine the numerical uncertainty of the computations, 6 grids are analyzed with the total

number of cells varying between 14.3 · 106 and 53.5 · 106. On table 5.1 the properties of the different

grids are presented. To generate the grids, the initial size of the grids is changed in HEXPRESS as well

as the first layer thickness, in order to maintain geometric similarity as much as possible. The integral

quantities CT and CP will be used in this analysis.

Table 5.1: Grid properties for the grid refinement study

Grid Refinement 1 2 3 4 5 6 7
Total no. Cells 14.3 · 106 17.8 · 106 19.3 · 106 25.3 · 106 29.4 · 106 37.4 · 106 53.5 · 106

Minimum Orthogonality 12.6o 12.8o 12.3o 12.2o 12.0o 10.3o 10.9o

Average Orthogonality 78.9o 77.9o 79.8o 78.4o 75.8o 76.4o 76.1o

Maximum Skewness 0.88 0.89 0.89 0.89 0.90 0.90 0.91

Grid Ref. Ratio 0.27 0.33 0.36 0.47 0.55 0.7 1.0
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5.2.1.A Iterative error

For this iterative error analysis, grid 3 will be used as a sample. The behaviour of the residuals are

similar for all seven grids.

On table 5.2 and fig. 5.8 the residuals iterative convergence for grid 3 are presented . The L2-norm

of the residuals are of order 10−4, while for the L∞-norm the order is around 10−1. A minimum order of

10−6 and 10−3 for L2-norm and L∞-norm respectively is desirable in order to do a verification study. This

is not fulfilled in this case. The reason of this could be the unsteady behaviour of the flow at model-scale,

specially at the blade root where a vortex is generated as was observed by [22]. The big difference be-

tween L2-norm and L∞-norm also suggests that the residuals are large only locally, as can be observed

on fig. 5.9, where it is shown that the maximum pressure residuals are on the blade root.

(a) (b)

Figure 5.8: Iterative convergence plots of the L2-norm and L∞-norm of the residuals for grid 3

Table 5.2: Iterative convergence and error

Grid Refinement Total no. Cells max L2 residuals max L∞ residuals Fluc. last 200
iterations CT [%]

Fluc. last 200
iterations CP [%]

Grid 1 14.3 · 106 5.2 · 10−4 2.8 · 10−1 0.001 0.001
Grid 2 17.8 · 106 3.6 · 10−4 4.2 · 10−1 0.001 0.001
Grid 3 19.3 · 106 2.2 · 10−4 3.6 · 10−1 0.001 0.001
Grid 4 25.3 · 106 1.8 · 10−4 1.7 · 10−1 0.001 0.001
Grid 5 29.4 · 106 2.1 · 10−4 2.2 · 10−1 0.001 0.001
Grid 6 37.4 · 106 1.7 · 10−4 3.1 · 10−1 0.001 0.001
Grid 7 53.5 · 106 1.9 · 10−4 1.5 · 10−1 0.001 0.001
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Figure 5.9: Maximum pressure residuals (above 1e-6)

The numerical method used is the steady RANS, which could explain the high residuals. Due to the

required computational time, unsteady RANS was not considered but it will be desirable at model-scale

conditions due to the unsteady behaviour.

As can be observed in table 5.2, the change after the last 200 iterations on the integrals quantities CT

and CP is below 10−3 percent, which means that despite the large values of the residuals, the integral

quantities converge to a constant value. This does not mean that this is the correct value.

In order to be able to neglect the iterative error, the order of convergence must be two to three orders

of magnitude below the discretization error. The large iterative error in this case, specially the L∞-norm,

could be too large to be neglected when compared to the discretization error according to the theory

presented in 2.5

5.2.1.B Discretization error

The thrust and power coefficients are calculated for the 7 grids in order to determine the discretization

error of the computations. In table 5.3 the integral quantities obtained are presented, as well as the

numerical uncertainty estimated. As it can be observed, the thrust coefficient and the power coefficient

decreases with the number of cells. The power coefficient is more sensitive to the number of cells as

it decreases a 62% from the coarsest grid (grid 1) to the most refined grid (grid 7), while for the thrust

coefficient the decrease is a 15%. Also, the uncertainty is much higher for CP than for CT reaching
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350% and 35% respectively. The graphs for the uncertainty estimation are shown in fig. 5.10 for grid 7.

Table 5.3: Power and thrust coefficients for seven different grids

Grid Refinement CT Uφ [%] CP Uφ [%]
Grid 1 0.57 37 0.16 356
Grid 2 0.54 35 0.14 357
Grid 3 0.54 33 0.13 351
Grid 4 0.52 30 0.10 345
Grid 5 0.51 28 0.09 350
Grid 6 0.50 26 0.08 365
Grid 7 0.48 21 0.06 363

(a)

(b)

Figure 5.10: Numerical uncertainty estimation for grid 7

This huge difference between CT and CP can be explained with the higher sensitivity to changes in

the attached flow region between the computed grids (see fig. 5.11). This is due to the fact that CP is

computed with the moment about the rotating axis of the turbine. As a result of changes in Cl/Cd at the

blade tip, CP is altered significantly due to the distance from the rotating axis. CT is computed with the

axial thrust force, so changes in Cl/Cd along the blade-span contribute equally. The iterative error could
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have also affected the uncertainty. Additionally, the fact that CP has really small values also affects to

this uncertainty as a little change represents a large percentage difference.

(a) (b) (c)

Figure 5.11: Limiting streamlines for different grids

In addition, in fig. 5.12 the iterative convergence of CT and CP is presented where the convergence

to a constant value can be observed.

5.2.1.C Final remarks

As a conclusion of this study, the challenge of getting appropriate iterative errors using steady calcu-

lations for an unsteady flow is observed, which results in large uncertainties especially for the power

coefficient.

For the following calculations, grid 4 is the one selected taking into account the computational time

needed and that it has the lowest uncertainty for CP , the variable more affected in the study.
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(a) (b)

Figure 5.12: Thrust and power coefficients for the different grids

5.2.2 Turbulence modeling

In this section, three different turbulence models are used and compared in order to determine which

one is the most suitable to model the flow around the turbine. The models used are the k−ω SST 2003,

Spalart-Allmaras and k −
√
kL. This models are described in section 2.4.3.

This three models are compared for a wind speed of Vwind = 2.0 m/s. The resulting integral quanti-

ties CT and CP are presented on fig. 5.13 and table 5.4.

(a) (b)

Figure 5.13: Thrust and power coefficients for three turbulence models
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Table 5.4: Power and thrust coefficients for three turbulence models

Turbulence Model CT CP
k − ω SST 2003 0.511 0.138
Spalart-Allmaras 0.655 0.286

k −
√
kL 0.571 0.148

Analogous to the refinement study the large differences in CP can be explained to the sensitivity of

this quantity with respect to the attached flow region, as it is shown next.

In fig. 5.14 the limiting streamlines for the suction side are shown for the three turbulence models.

(a) k − ω SST 2003 (b) Spalart-Allmaras (c) k −
√
kL

Figure 5.14: Limiting streamlines over the suction side of the turbine blades for three turbulence models

For the three models, the flow in the region near the blade tip remains attached. In this region the

apparent angle of attack is much smaller than near the root of the blade and the local velocities are

higher. As a result the flow is able to remain attached to the surface.

Near the root, the apparent angle of attack is larger and the flow is not longer able to remain attached
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to the blade, which causes the separation and the degradation of the performance of the blade locally.

The size of the attached region is significantly smaller for the k − ω SST 2003 model.

The size of the attached region has direct impact on the power coefficient as, for computing it, the

torque around the x-axis is used. In the attached region, the lift generated is higher, so this will contribute

significantly to the total moment as it is located near the tip of the blade. This explains the big difference

in Cp between the models, where the the Spalart-Allmaras model shows a larger attached flow region

and Cp value (table 5.4) when compared to the k − ω SST model and k −
√
kL model.

The thrust coefficient is computed by the axial force working on the turbine, where lift and drag coef-

ficients over the complete turbine blade span contribute equally, in contrary to the increased contribution

of the blade tip with regard to CP . This leads to a reduction of the sensitivity to the size of the attached

flow at the blade tip.

5.2.3 Transition model

The γ − Reθ transition model explained in section 2.4.4 will be used in order to determine if there is an

improvement on the results in comparison with the turbulence models used on the section above. For

the transition model, there is a big influence of the turbulence inlet quantities (eddy viscosity ratio µt
µ

and turbulence intensity Tu) on the results of the simulation. The inlet boundary is located 15 diameters

upstream from the turbine and a decay of the inlet quantities will occur along the streamwise direction

and the values on the turbine will be different from the values at the inlet. To determine which initial

values are the ideal ones to model the flow is critical for the simulation. The decay of the turbulence

quantities for a uniform flow U are given by the following analytical solutions [63] of the transport equation

for k and ω on the k − ω SST turbulence model:

k = kinlet

(
1 +

ρβkinlet

(µtinlet /µ)µU
(x− xinlet )

)−β∗/β
,

ω = ωinlet

(
1 +

ρεkinlet

(µtinlet /µ)µU
(x− xinlet )

)−1

,

(5.1)

where kinlet, ωinlet and xinlet are the values specified at the inlet. The decay of the eddy viscosity

ratio is given by,

µt
µ

=
µtinlet

µ

(
1 +

ρβkinlet

(µtinlet /µ)µU
(x− xinlet )

)1−β∗/β

(5.2)

while the turbulence intensity is directly related with the kinetic energy by,
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Tu = 100
√

2k/ (3U2) (5.3)

These equations show a strong decay for the turbulence quantities. In order to control this decay and

get realistic values of the turbulence quantities at the turbine, these quantities will be frozen until one

radius in front of the turbine. A sensitivity study will be performed in order to determine which is the pair

of values more suitable for the simulation.

A sensitivity study changing the values of the initial eddy viscosity ratio will be done. Three cases will

be studied for the eddy viscosity: 2, 10 and 50. The turbulence intensity will be set on 10%. On fig. 5.15

and fig. 5.16 the evolution of the turbulence quantities on the streamwise direction is shown.

Figure 5.15: Decay of the eddy viscosity ratio along the streamwise direction
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Figure 5.16: Decay of the turbulence intensity along the streamwise direction

A strong decay of the turbulence intensity can be observed on the figure above, while it is less pro-

nounced for the eddy viscosity ratio.

In order to determine if there is a big impact on the results with the eddy viscosity ratio, different

parameters will be studied: normalized eddy viscosity contour plots, limiting streamlines, power, thrust,

friction and pressure coefficients.

On fig. 5.17 the normalized eddy viscosity contour plots on different sections of the blade are pre-

sented for the three cases of eddy viscosity ratio studied.

On fig. 5.18 the limiting streamlines on the suction side of the blades are presented for the three eddy

viscosity ratio cases.

Another way of determine transition of the flow in addition to the limiting streamlines is looking at the

intermittency γ as it is mention on [64]. If γ > 0.03 the flow is turbulent while it is laminar if γ < 0.03. On

fig. 5.19, it is shown this condition.

On fig. 5.20 and fig. 5.21 the friction and pressure coefficients at different sections of the blade are

presented for the three cases of eddy viscosity ratio studied.
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Figure 5.17: Normalized eddy viscosity contour plots on different sections of the blade for the three cases of eddy
viscosity ratio

Figure 5.20: Friction and pressure coefficients at different sections of the blade for 10 and 50 eddy viscosity ratio
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Figure 5.18: Limiting streamlines on the suction side of the blade for the three cases of eddy viscosity ratio

Figure 5.21: Friction and pressure coefficients at different sections of the blade for 10 and 2 eddy viscosity ratio
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Figure 5.19: γ criterion for visualization of flow separation

Finally, on fig. 5.22 the thrust and power coefficients are presented comparing them with the results

for the turbulence models.

Figure 5.22: Power and thrust coefficients for the transition and turbulence models
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Table 5.5: Power and thrust coefficients for transition and turbulence models turbulence models

Turbulence Model CT CP
k − ω SST 2003 0.511 0.138
Spalart-Allmaras 0.655 0.286

k −
√
kL 0.571 0.148

γ −Reθ µt/µ = 2 0.489 0.061
γ −Reθ µt/µ = 10 0.620 0.239
γ −Reθ µt/µ = 50 0.683 0.319

As can be observed on the figures, there are differences between the three eddy viscosity ratio

cases. As the eddy viscosity increases, the normalized eddy viscosity is bigger around the blade as can

be observed on fig. 5.17. Furthermore, as the eddy viscosity ratio increases, the separations occurs

before.

Also the friction and pressure coefficients are higher as the eddy viscosity increases as it is shown

on figs. 5.20 and 5.21. About the limiting streamlines (fig. 5.18), a difference in the direction followed by

them can be also observed . As the eddy viscosity ratio increases, the number of limiting streamlines on

the streamwise direction are higher, which means separation of the flow.

The higher difference between the three cases can be observed on the power and thrust coefficients

(fig. 5.22). As the eddy viscosity ratio increases, the power and thrust coefficients increases also. Com-

paring them with the turbulence models, for eddy viscosity ratio 2, the coefficients are the lowest for all

the models while for eddy viscosity ratio 50, the coefficients are the highest. The power coefficient is still

positive for the three cases in contrast with the negative results of the experiments.

On fig. 5.23 the residuals for turbulence intensity 10% and eddy viscosity ratio 10 are shown in order

to observe if there is an improvement with respect to the turbulence models.
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(a) (b)

Figure 5.23: Iterative convergence plots of the L2-norm and L∞-norm of the residuals for the transition model

As can be observed, there is not an improvement on the residuals and they are even higher than the

turbulence models residuals, especially for the variable γ of this transition model.

As a conclusion, the transition model has not improved the results of the turbulence models but this

does not mean that it is not a good option to model this type of turbine with a transition model. Further

studies can be done with the transition model in other to achieve the pair of turbulence quantities that

best fits with actual behaviour of the flow.
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6.1 Comparison for NREL 5 MW full-scale and model-scale

First of all, the knowledge obtained from the comparison between the NREL 5MW Wind Turbine at

full-scale and model-scale will be summarized:

• The behaviour of the flow around the turbine is different at full-scale and model-scale due to

Reynolds dissimilitude that comes from Froude scaling, where aerodynamic forces are not scaled

properly. The flow can be considered fully turbulent at full-scale while at model-scale there is

transition from laminar to turbulent.

• The different behaviour in the flow causes a poor performance of the NREL 5MW wind turbine at

model-scale, specially significant looking at the power coefficient CP , whose value drops drastically

for the full-range of TSRs.

• Friction and pressure coefficients are also affected by the differences on the flow behaviour. Fric-

tion coefficient is higher at model-scale than at full-scale along the blade as friction is higher for

laminar flow than for turbulent flow. For the pressure coefficient it is the opposite: it is higher at

full-scale than at model-scale.

6.2 NREL 5 MW model-scale at design TSR

The knowledge obtained from the NREL 5MW wind turbine at model-scale will be summarized next:

• Large residuals were obtained with the iterative error study performed on different refined grids.

The order of the L2-norm and L∞ norm residuals obtained was 10−4 and 10−1, far from the de-

sirable order, however the integral quantities converged to a constant value. The discretization

error obtained was also higher than desirable specially for CP with uncertainties around 300%,

This could be mainly due to the use of a steady RANS at model-scale, where the flow is clearly

unsteady.

• Three different turbulence models were used in order to determine which one is the most suitable to

model the flow around the turbine at model-scale: k−ω SST 2003, Spalart-Allmaras and k−
√
kL.

Lower values and closer to experimental results for the integral quantitiesCT andCP were obtained

for the k−ω SST model while the higher values were obtained by the Spalart-Allmaras model. This

is directly related by the size of the attached region that contributes to the value of the CP . The size

of the attached region for the Spalart-Allmaras model is the higher of the three. However neither

of the models replicate the behaviour obtained by the experiments for CP , where negative values

were obtained.
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• The transition model γ −Reθ was used looking for improvements in the results in comparison with

the turbulence models, as transition is presented at model-scale. Calibration of the inlet turbulence

quantities with transition models. This makes the model difficult to be used for blind predictions

of industrial flows. A sensitivity analysis changing the initial values of the eddy viscosity ratio of

the flow was performed. The increase of the the eddy viscosity ratio made the separation to occur

closer to the leading edge of the blade. Neither the residuals nor the integral quantities improved

in comparison to the turbulence models, as the residuals are still higher than desirable and the CP

values are still positive.

6.3 Recommendations for future studies

For future studies, an improvement in the scaling methodology of the NREL 5MW wind turbine should

be consider in order to obtain a similar aerodynamic behaviour to the full-scale turbine, that will ease the

optimization of it.

It is desirable to perform unsteady RANS (URANS) at model-scale, as the flow is highly unsteady.

Lower iterative errors and numerical uncertainties are expected when using URANS and it will give a

better understanding of the flow around the turbine.

A deeper study on the transitional model could give the ideal pair of initial turbulence quantities that

resemble the real flow around the turbine. As at model-scale there is transition, using this type of models

is really promising.

Finally, the study of the coupled problems, with the aerodynamic and hydrodynamic loads acting on

the turbine will be the last step to properly model FOWTs and help for optimization.
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